

UNIVERSITAS RIAU FAKULTAS TEKNIK JURUSAN TEKNIK KIMIA PROGRAM STUDI SARJANA TEKNIK KIMIA

RENCANA PEMBELAJARAN SEMESTER (RPS)

	T	T			_			
Nama MataKuliah	Kode Mata	Rumpun Mata	Bobot SKS		Semester	Tanggal		
	Kuliah	Kuliah				Penyusunan		
KOMPUTASI PROSES	TKS3132	Engineering	T = 1,5	P = 0,5	5	1 Agustus 2023		
Otorisasi	Koordinator Per	ngembangan RPS	Koordi	nator Bidang	Koordinate	or Program Studi		
				eahlian				
	36.3					1 cm 1 m		
	Muhammad Iwa	wan Fermi, ST., MT Panca Setia Utama, Ph.D Zulfansyah, ST., MT						
Capaian	CPL Prodi (Capa	ian Pembelajaran Lulusan Program Studi) yang dibebankan pada mata kuliah						
Pembelajaran	D	Kemampuan meng	gidentifikasi, r	nerumuskan, m	enganalisis dan me	nyelesaikan		
		permasalahan teknik kimia komplek						
	Е	Kemampuan mene	erapkan berba	gai metode den	gan menggunakan	perangkat		
		teknologi informasi dan komputer serta piranti teknik yang modern dalam						
		melakukan rekayasa proses dan operasi teknik kimia						
CPMK (Capaian Pembelajaran Mata Kuliah)								
	CPMK-1	Mahasiswa mampi	u menerapkar	n metoda least s	quare untuk menca	ari persamaan		
		empiris dari satu set data eksperimen dengan MS Excel						

	CPMK-2	Mahasiswa mampu mengidentifikasi dan menyelesaikan model matematis berupa
	CF MIX-2	PDB orde 1 dari suatu peristiwa teknik kimia dengan penerapan intergrasi numeris
		dan/atau metode Runge Kutta dengan MS Excel
	CPMK-3	Mahasiswa mampu menggunakan perangkat lunak simulator proses teknik kimia
	CPMIK-5	
		untuk menyelesaikan persoalan unit operasi tunggal maupun dalam bentuk
		rangkaian unit
	Sub CPMK	
	Sub CPMK-1	Mahasiswa memahami CP matakuliah.
	Sub CPMK-2	Mahasiswa mampu mengolah 1 set data kinetika dan mencari persamaan kinetika yang sesuai serta menentukan nilai kontanta laju reaksi serta energy aktivasinya dengan MS Excel
	Sub CPMK-3	Mahasiswa mampu mengolah 1 set data kinetika dan menerapkan metode least square untuk menentukan konstanta laju reaksi serta orde reaksi sesua persamaan empiris yang digunakan dengan MS Excel
	Sub CPMK-4	Mahasiswa mampu menerapkan integrasi numeris untuk menghitung volume reaktor alir pipa dan menghitung waktu pengosongan tangki dengan MS Excel
	Sub CPMK-5	Mahasiswa mampu menerapkan metode Runge Kutta untuk menghitung volume
		reaktor alir pipa isothermal dan reaktor alir pipa non isothermal non adiabatis MS Excel
	Sub CPMK-6	Mahasiswa mampu menghitung energi dan komposisi luaran reaktor dengan pendekatan reaktor stokiometri dan reaktor Gibbs dengan simulator proses
	Sub CPMK-7	Mahasiswa mampu menetukan volume reaktor alir tangki berpengaduk dan reaktor alir pipa dengan simulator proses
	Sub CPMK-8	Mahasiswa mampu menentukan jumlah stage dan refluks ratio menara distilasi metoda FUG dan metode rigorous dengan simulator proses
	Sub CPMK-9	Mahasiswa mampu menghitung neraca massa dan energy rangkaian alat proses kasus refrigerasi dengan simulator proses
		O
Deskripsi Singkat	Mata kuliah in	i memberikan pengalaman belaiar kepada mahasiswa agar mampu menggunakan
Mata Kuliah		
		•
Deskripsi Singkat Mata Kuliah	perangkat lunal model matemat	i memberikan pengalaman belajar kepada mahasiswa agar mampu menggunakan k (MS Excel dan Simulator Proses) untuk mengolah data eksperimen, menyelesaiakan tis dari beberapa kasus aliran fluida dan reaktor. Serta mensimulasikan berapa unit dan rangkaian unit operasi dengan menggunakan simulator proses.

Bahan Kajian/Materi	1. Pengolahan data kinetik dengan MS Excel						
Pembelajaran	2. Penerapan integrasi Simpson untuk kasus aliran fluida (waktu pengosongan tangki) dan penentuan						
	volume reaktor alir pipa isotermal dengan MS Excel						
	3. Penerapan metode Runge Kutta untuk penentuan volume reaktor alir pipa isotermal dengan MS						
	Excel						
	4. Penerapan metode Runge Kutta untuk penentuan volume reaktor alir pipa non isothermal non adiabatik dengan MS Excel						
	5. Pengenalan simulator proses						
	6. Simulasi beberapa jenis reaktor dengan simulator proses						
	7. Simulasi menara distilasi multikomponen metode FUG dengan simulator proses						
	8. Menghitung neraca massa dan energy rangkaian unit operasi dengan simulator proses						
Daftar Referensi	Utama:						
	1. Sediawan, Wahyudi Budi & Agus Prasetya. Pemodelan Matematis dan Penyelesaian Numeris dalam Teknik Kimia dengan Pemrograman Bahasa BASIC. UGM PRESS, 1998.						
	Pendukung:						
	2. Bindar, Y. Pemodelan dan Simulasi Proses dengan ASPEN PLUS, ITB, 2020.						
	3. Utama, Panca Setia, Ram Yamsaengsung, and Chayanoot Sangwichien. "Precipitated silica derived from palm oil mill fly ash: Kinetics and Characterization." Key Engineering Materials 673 (2016): 183-192.						
	4. Fogler, H. Scott. "Elements of Chemical Reaction Engineering. PTR Prentice-Hall." Inc., Englewood Cliffs, NJ, USA (1992).						
Dosen Pengampu	Panca Setia Utama, ST., MT., PhD						
	Muhammad Iwan Fermi, ST., MT						
	Hari Rionaldo, ST., MT						
Mata Kuliah Syarat	Pernah menempuh Metode Numerik dan Matematika Teknik Kimia						

Minggu Ke-	Sub-CPMK (Kemampuan akhir yang direncanakan)	Penilaian		Bantuk Pembelajaran; Metode Pembelajaran; Penugasan Mahasiswa; [Estimasi Waktu]		Materi Pembelajaran [Pustaka]	Bobot (%)
		Indikator	Kriteria & Bentuk	Tatap Muka	Daring		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Mahasiswa memahami CP matakuliah Mahasiswa mampu menjelaskan konsep komputasi proses	Ketepatan Deskripsi	Rubrik deskriptif	Tatap muka (singkron): Pemaparan materi 2 x 50 menit	Tatap maya (singkron): Pemaparan materi 3 x 50 menit	RPS, Kontrak perkuliahan Pengantar Pemodelan Dalam Teknik Kimia	
2	Mahasiswa mampu mengolah 1 set data kinetika dan mencari persamaan kinetika yang sesuai serta menentukan nilai kontanta laju reaksi serta energy aktivasinya dengan MS Excel (kasus ekstraksi silika dari abu sawit)	Ketepatan analisis dan kesesuain model	Rubrik deskriptif/ rubrik holistik	Pemaparan, diskusi, kolaborasi Tugas 2 x 50 menit	Video Pembelajaran 2 x 50 menit	Pengolahan data kinetic dengan MS Excel (3)	
3,4	Mahasiswa mampu mengolah 1 set data kinetika dan menerapkan metode least square untuk menentukan konstanta laju reaksi serta orde reaksi sesua persamaan	Ketepatan analisis dan kesesuain model	Rubrik deskriptif/ rubrik holistik	Pemaparan, diskusi, kolaborasi Quiz 4 x 50 menit	Video Pembelajran 4 x 50 menit	Pengolahan data kinetic dengan MS Excel(4)	

	empiris yang digunakan dengan MS Excel						
4-5	Mahasiswa mampu menerapkan integrasi numeris untuk menghitung volume reaktor alir pipa dan menghitung waktu pengosongan tangki dengan MS Excel	Ketepatan identifikasi dan Metode penyelesaian	Rubrik deskriptif/ rubrik holistik	Pemaparan, diskusi, kolaborasi Tugas 4 x 50 menit	Video Pembelajaran 4 x 50 menit	Penerapan integrasi Simpson untuk kasus aliran fluida dan penentuan volume reaktor alir pipa isotermal dengan MS Excel(1,4)	
6-7	Mahasiswa mampu menerapkan metode Runge Kutta untuk menghitung volume reaktor alir pipa isothermal dan reaktor alir pipa non isothermal non adiabatis MS Excel	Ketepatan identifikasi dan Metode penyelesaian	Rubrik deskriptif/ rubrik holistik	Pemaparan, diskusi, kolaborasi Tugas 4 x 50 menit	Video Pembelajaran 4 x 50 menit	Penerapan metode Runge Kutta untuk penentuan volume reaktor alir pipa (reaktor iso termal dan reaktor non isothermal non adiabatic) dengan MS Excel (1,4)	
8	UTS (Pemantapan penguas	saan bahan ajar 1-7)	L	L		
9	Pengenalan simulator proses	Ketepatan deskripsi	Rubrik deskriptif	Pemaparan, diskusi, kolaborasi Tugas 2 x 50 menit	Video Pembelajaran 2 x 50 menit	Pengenalan simulator proses (2)	
10	Mahasiswa mampu menghitung energi dan komposisi luaran reaktor dengan pendekatan reaktor stokiometri dan	Ketepatan analis dan metode penyelesaian	Rubrik deskriptif/ rubrik holistik	Pemaparan, diskusi, kolaborasi Tugas 2 x 50 menit	Video Pembelajaran 2 x 50 menit	Reaktor stokiometrik dan raeaktor Gibbs (2)	

	reaktor Gibbs dengan simulator proses						
11	Mahasiswa mampu menetukan volume reaktor alir tangki berpengaduk dan reaktor alir pipa dengan simulator proses	Ketepatan analitis dan metode peyelesaian	Rubrik deskriptif/ rubrik holistik	Pemaparan, diskusi, kolaborasi quiz 2 x 50 menit	Video pembelajaran 2 x 50 menit	Reaktor CSTR dan RAP (2)	
12-13	Mahasiswa mampu menentukan jumlah stage dan refluks ratio menara distilasi metoda FUG dan metode rigorous dengan simulator proses	Ketepatan analisis dan metode penyelesaian	Rubrik deskriptif/ rubrik holistik	Pemaparan, diskusi, kolaborasi Tugas 4 x 50 menit	Video Pembelajaran 4 x 50 menit	Menara Distilasi (2)	
14-15	Mahasiswa mampu mensimulasikan rangkaian unit operasi kasus refrigerasi dan sintesis mono chloro benzene dengan simulator proses	Ketepatan analisis dan metode penyelesaian	Rubrik deskriptif/ rubrik holistik	Pemaparan, diskusi, kolaborasi Tugas 4 x 50 meni	Video Pembelajaran 4 x 50 menit	neraca massa dan energy rangkaian unit operasi dengan simulator proses(2)	
16	UAS (pemantapan penguasaan bahan ajar 9-15)						